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ABSTRACT

The Hybrid-Mode Boundary Intcgral Equation Method is
extended to full-wave analysis of arbitrary MMIC trans-
misgion lines that incorporate superconductors and/or
normal (imperfect) conductors and lossy dielectrics. The
method is demonstrated for thin film microstrip line of
small width. Attenuation and effective permittivity results
of several configurations with Au and YBCO strips sepa-
rated by medium and high permittivity films are compa-
red.

INTRODUCTION

Continued reduction of conductor cross-sections in MMIC
transmission lines has made conductor losses a problem
which deserves increased attention. This applies to
(i) accurate modeling of transmission lines as due to
existing technology with conventional conductors, and
(i) evaluation of low loss alternatives with high-T,
superconductors.
It is important to note that imperfect conductors do not
only add to transmission line loss, but may considerably
affect phase velocity and alter the dispersion characteri-
stic for cross-sectional dimensions that are not large
compared to the skin depth or the penetration depth,
respectively, in the superconducting case. The concept
that by continued reduction of dimensions the quasi-static
regime will ultimately be reached is correct only for
perfect conductors. For real conductors and dimensions
comparable to the skin or penetration depth there is poor
accuracy with approximate loss calculations which are
based on the static field distributions. Full wave analysis
is required in this case.
Full-wave loss analyses for finite thickness (normal) con-
ductors have been reported using e.g. the Finite-Element
Method 1], the Method of Lines [2] and the Mode-Mat-
ching Method[3]. For high conductivity materials this Kind
of analysis is numerically demanding because of the large
ratio o/we and difficulties to represent accurately the
almost vanishing fields within the conductors. It may be
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expected to be even more demanding for superconducting
transmission lines. Analysis of superconducting structures
up to now was in fact either by means of approximate
models like [4] or restricted to layered configurations of
infinite extent or zero thickness [5-7].

This paper demonstrates the application of the Hybrid-
Mode Boundary Integral Equation Method [8] to the ana-
lysis of general transmission lines with normal con-
ductors, superconductors and lossy dielectrics. Advantages
of this approach are its flexibility to cope with arbitrary
shielded or unshielded transmission lineé cross-sections and
its reliability in that the origin of spurious solutions, still
a major problem in finite-element, finite difference and
spectral domain approaches, has been eliminated [9].

METHOD OVERVIEW

The field theoretic method is an extension of the space
domain hybrid-mode boundary integral equation method
the principle of which was described in [8). Given an ar-
bitrary structure which is translationally invariant with
respect to the axial unit vector &, we interest for soluti-
ons that vary with time and axial coordinate like
expljwt -yar) where y€C. Suppressing the common factor
we look at the electric and magnetic field as functions
EH: RrR> ¢° of transversal coordinates only. The basic
idea of the boundary integral approach now is, that E and
H in the interior of a homogeneously filled subregion
QCR? of the transverval plane are uniquely specified by
their boundary values. Hence the problem can be formu-
lated exclusively in terms of the axial and tangential
field components a-H, ¢E, a-E, t-H:0Q—C along the
subregion boundaries (Fig.1). This approach circumvents
any numerical problems associated with the discretization
of almost vanishing fields in subregions of good or super-
conducting media. The dispersive properties of the medium
in subregion Q) are described by the two functions

Z:R-C, o~ jwuo(ur’ (u)-ju:(w)) (1a)

and
y:R~C, w~o(w-jo(w) + ja)so(sr’(a))—js;’(w)) . (1v)
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There are no restrictions on the medium apart from being
linear and isotropic. Hence this description complies well
" with linear ' models of superconductivity. Such models
reduce to a temperature and frequency dependent con-
ductivity as does for instance the well known two fluid

L (1))

oL, ).(O)_2 @

o(T,w) = anc(—%c)4 ~j

where o denotes the normal state conductivity just abo-
ve the critical temperature T and A(0) denotes penetra-
tion depth at T=0.

The fields within Q being uniquely specified by the four
boundary value functions &-H, #E, aE, tH:00-C we
have to establish a set of equations to determine the lat-
ter. In the absence of interior sources, it follows from
Maxwells equations, that the axial components a-H and
a'E are solutions of the homogeneous Helmholtz equation

Au + (yz—z(m)y(w))u =.0. (3)

Solutions of (3) can be found as solutions of the associa-
ted boundary integral equation. To introduce the latter we
need a few definitions. Let QCC denote the union of the
negative imaginary halfplane and the positive real axis
and take

hwy) = r*-z(0)r(e) €Q (4)

with z and y given by eqns. (1). As a fundamental soluti-
on of the 2-D Helmholtz equation (3) appropriate for
subregion 0} we may then introduce the function

(s)

where K is the modified Bessel function of the second
kind and zero order. This solution well
defined for arbitrary complex media as described by eqns.
(1). Solutions of (3) may now be obtained from the bo-
undary integral operator equation

¢(p.g):xQ\ Diag(QxQ) ~ €, (p.g)~ K, (jhlp-ql)

fundamental

K[u]-G[$4] = o, (6)

with the operators given by

GIv1(p) = [e(p.q)v(a) ds(q)
2O0\{p}

K[ul(p) := [ grad s(p.q) ulg)ds(q).
2ON\{p}

(7)

(8)

A definition of K in terms of uniformly convergent boun-
dary integrals was given in [8]. Upon the proper substitu-
the following

tions from Maxwells integral

equation system for the boundary values on oQ) is obtai-

equations

ned

342

other
subregions

" subregion Q with
linear, isotropic,
complex medium:

z(m), y(w) eC

curve -
parameter

a(s)

\t)Q

boundary

tripoid of
unit vectors

Fig.l: Definitions relative to a homogeneous subregion
Q of the transmission line cross-section.

2
KlaH -2 GlE1-LGI-L aE1 = 0, (9a)

2
KlaE 1+ GleH ]+ Gl1E aH =0 (9b)
The unkown boundary value functions in (9) always belong
to two subregions thereby satisfying continuity require-
ments. B-splines are used for their discretization. For the
overall structure a homogeneous system of integral equa-
tions emerges which is solved numerically by the method
of least squares with intermediate projection [9]. As op-
posed to the Galerkin and other method of moments ap-
proaches which introduce spurious solutions in Boundary-
Element, Finite-Element, Finite Difference and Spectral
Domain Approaches for electromagnetic field eigenvalue
problems, this method provides a reliable discretization.
The present analysis demonstrates

absence of spurious

modes for non-trivial problems.

APPLICATION TO THIN FILM MICROSTRIP LINE

The use of thin-film microstrip {TFMS) line with conven-
tional conductors has been reported e.g in [10]. Apart
from its low chip size requirements it has the advantage
to combine well with active devices because both strip
and ground conductor are accessible from the top side of
the substrate. The drawback of conventional TFMS line is
its high attenuation. With the advent of the new high—TC
however TFMS may become interesting
alternative to coplanar waveguide in MMIC applications
[4]. We have performed full-wave analysis to obtain
propagation constant and attenuation for several TFMS
configurations with Au and YBCO conductors and different
film and substrate materials. The simplified model of
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Fig.2 has the ground conductor replaced by an infinite
perfectly conducting plane. The effect of finite ground
metalization and substrate becomes obvious by comparing
results with that for the more realistic model of Fig.3.
Effective permittivities seff==(/3/ko)2 are given in Fig.4
for the case of Si,N, films (¢ =7.3) and in Fig.5 for
LaAlO, film (g =24.5). The corresponding transmission
line losses are given in Fig.6 . for Au conductors with
cJ’=4.3><107((')m)'1 and in Fig.7 for YBa,Cu,0, at 77K.
The latter was modeled in accordance with eqn.(2) by

109
i 210" yom)! for T=77K  (10)

= (4.106 -
olf) = (4-10°~ § Zm

corresponding to A(77K)=260nm after measurements repor-
ted in [11). The different curves labeled 1-13 relate to dif-
ferent combinations of substrate material, conductor material
and strip thickness ¢ as listed in Table I. GaAs (sr’=12.9)
was assumed for the substrate in Fig.3. Dielectric losses
were ignored everywhere but in configuration 13.

For all examples a considerable increase of effective
permittivity is observed for Au and YBCO strips against
perfectly conducting strips. The increase can be under-
stood as due to the contributions of internal inductance
L; (in the case of normal conductors) and kinetic induc-
tance L, (for superconductors) which add to the geome-
tric inductance Lg'. If we accept a parallel plate wavegu-
ide with conductor separation d as an approximate model
their contributions can be estimated by

5 L’
Eeff‘normal cond. o 1. Ll’ o~ 1+% (11)
effperfect cond. 4

£ L

Eeff.sugerconductor N 14 Ll’( ~ 1+‘_/} (12)
effperfect cond. (3

provided that ¢ is much larger than skin depth § and pe-
netration depth A. While A is independent of frequency, &
behaves like the inverse square root of frequency. Hence
{11) and (12) are in principal agreement with the full-wa-
ve results of Figs.4-7. Better approximations are found
e.g. in [5]. On an expanded scale a small decrease of
effective permittivity over frequency is observed for the
superconducting examples.

infinite perfect ground conductor

Fig.2: Simplified model of thin film microstrip:line.

CONCLUSION

The space- domain hybrid mode boundary integral equation
method is extended to the analysis of waveguide with ar-
bitrary complex media. The approach has some distinct
advantages with respect to analysis of good conductors
and superconductors. Fields within conductors are repre-
sented exclusively by their boundary values. Hence nu-
merical problems due to discretization of eventually very
small interior fields can not arise. Furthermore the pro-
blem of sensitivity to discretization [2] is significantly
reduced. As opposed to [3] the method allows for arbi-
trary conductor shape including curved boundaries. Shiel-
ding is not required.
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TABLE 1I: TFMS CONFIGURATIONS ANALYZED IN THIS PAPER
Numbers 1-13 correspond to the curves of Figs.4-7.
configuration wl | =2 | =3 [ «4 | u5 [ =6 27 | =8 [ =9 [ =10 [ =11 | =12 | #13
geometry Fig.2 Fig.3 Fig.2
strip t/um 0.5 1.0 1.0
conductor | Au |YBCO]perf. | Au |[YBCO]perf. | Au |YBCO[perf. | Au_|YBCO[perf. [YBCO
film e 7.3 24.5
tan s 0 | 10*
ground conductor perfect Au |YBCO| perf. perfect
substrate £ 12.9
a5 Fig.4: Effective Permittivity for SigN,~film Fig.5: Effective Permittivity for LaAlOg—film
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