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ABSTRACT

Tbe Hybrid-Mode Boundary Integral Equation Method ia

extended to full-wave analysis of arbitrary MMIC trans-
mission limes that incorporate supereondtretors arrdlor

mrmal (imperfect) conductors and 10SSY dielectrics. The

method is demonstrated for thin film microstrip liie of

small width. Attenuation and effeetive perrnittivi~ results

of several eonfiiatiorts with Au and YBCO strips sepa-

rated by medium and high pcrmittivity fflms are compa-

red.

INTRODUCTION

Continued reduction of conductor cross-sections h MMIC

transmission lines has made conductor losses a problem

which deserves increased attention. This applies to

(i) accurate modeling of transmission lines as rlue to

existing technology with conventional conductors, and

(ii) evaluation of low loss alternatives with high-~

superconductors.

It is important to note that imperfect conductors do not

only add to transmission line loss, but may considerably

affect phase velocity and alter the dispersion characteri-

stic for cross-sectional dimensions that are not large

compared to the skin depth or the penetration depth,

respectively, in the superconducting case. The concept

that by continued reduction of dimensions the quasi-static

regime will ultimately be reached k correct only for

perfect conductors. For real conductors and dimensions

comparable to the skin or penetration depth there is poor

accuracy with approximate loss calculations which are

based on the static field distributions. Full wave analysis

is required in this case.

Full-wave loss analyses for finite thickness (normal ) con-

ductors have been reported using e.g. the Finite-Element

Method [11, the Method of Lines [2] and the Mode-Mat-

ching Method [31. For high conductivity materials ttils kind

of analysis is numerically demanding because of the large

ratio U/cog. and difficulties to represent accurately the

almost vanishing fields withh the conductors. It may be

expected to be even more demanding for superconducting

transmission lines. Analysis of superconducting structures

up to now was in fact either by means of approximate

models like [4] or restricted to layered configurations of

infinite extent or zero thickness [5-7].

Thk paper demonstrates the application of the Hybrid-

Mode Boundary Integral Equation Method [8] to the ana-

lysis of general transmission lines with normal con-

ductors, superconductors and lossy dielectrics. Advantages

of thk approach are its flexibility to cope with arbitrary

shielded or unshielded transmission line cross-sections and

its reflabllity in that the origin of spurious solutions, still

a major problem in finite-element, finite difference and

spectral domain approaches, has been eliminated [9].

METHOD OVERVIEW

The field theoretic method is an extension of the space

domain hybrid-mode boundary integral equation method

the principle of which was described in [8]. Given an ar-

bitrary structure which is translationally invarinnt with

respect to the axial unit vector a, we interest for soluti-

ons that vary with time and axial coordinate like

exp(jtit -yar) where ye C. Suppressing the common factor

we look at the electric and magnetic field as functions

E,H: iR2- C3 of transversal coordinates only. The basic

idea of the boundary integral approach now is, that E and

H in the interior of a homogeneously filled subregion

fl C IR2 of the transversal plane are uniquely specified by

their boundary values. Hence the problem can be formu-

lated exclusively in terms of the axial and tangential

field components a.H, @ a-E, f-if: ~fl - C along the

subregion boundaries (Fig.1 ). This approach circumvents

any numerical problems associated with the discretization

of almost vanishing fields in subregions of good or super-

conducting media. The dispersive properties of the medium

in subregion Q are described by the two functions

(la)
z : R-c, o ~j~co(u;(u)-ju~(o))

and

y : IR-C, ar - U’(O) - jrr’’(6r) + jtieo(e~(ti)-je~ (a)) . (lb)
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There are no restrictions on the medium apart from being

linear and isotropic. Hence thks description complies well

with linear models of superconductivity. Such models

reduce to a temperature and frequency dependent con-

ductivity as does for instance the well known two fluid

model

d(T, ti) ❑ Unc(~)4 -j&- (1-(*)4) (2)

@v. NO)2

where Unc denotes the normal state conductivity just abo-

ve the critical temperature Tc and 2(0) denotes penetra-

tion depth at T= O.

The fields within !3 being uniquely specified by the four

boundary value functions 8-H, PJ3, a-E, tI-1: tIfl + C we

have to establish a set of equations to determine the lat-

ter. In the absence of interior sources, it follows from

Maxwells equations, that the axial components a-H and

a.E are solutions of the homogeneous Helmholtz equation

6U + (y’-z(o)y(al))u = o. (3)

Solutions of (3) can be found as solutions of the associa-

ted boundary integral equation. To introduce the latter we

need a few definitions. Let QcC denote the union of the

negative imaginary halfplane and the positive real axis

and take

h(u,y) =/y2-Z(aJ)y(O) EQ (4)

with z and y given by eqns. (1). As a fundamental soluti-

on of the 2-D Helmholtz equation (3) appropriate for

subregion Q we may then introduce the function

g(p,d:nx Q\ fhdQxQ)+ C (Ad- ~o(j~b-d) (5)

where KO is the modified Bessel function of the second

kind and zero order. This fundamental solution well

defined for arbitrary complex media as described by eqns.

(l). Solutions of (3) may now be obtained from the bo-

undary integral operator equation

with

K[u] -G[~] = O, (6)

the operators given by

G[v](P) != fdp, ddfl) d-dd (7)

Xl\{p}

K[u](p) := ~gradqg(p, q) u(q) d~(q). (8)

an \{P}

A definition of K in terms of uniformly convergent boun-

dary integrals was given in [8]. Upon the proper substitu-

tions from Maxwells equations the following integral

equation system for the boundary values on ~fl is obtai–

ned

Flg.1: Definitions relative to a homogeneous subregion

fl of the transmission line cross-section.

K[aIZ]-#G[ fi]-; G[~aE]=O, (9a)

K[aE]+:G[fH]+; G[&]=o . (9b)

The unkown boundary value functions in (9) always belong

to two subregions thereby satisfying continuity require-

ments. B–splines are used for their discretization. For the

overall structure a homogeneous system of integral equa-

tions emerges which is solved numerically by the method

of least squares wfth hfermeo?ate projectiorr [9]. As op-

posed to the Galerkin and other method of moments ap-

proaches which introduce spurious solutions in Boundary-

Element, Finite-Element, Finite Difference and Spectral

Domain Approaches for electromagnetic field eigenvalue

problems, this method provides a reliable discretization.

The present analysis demonstrates absence of spurious

modes for non-trivial problems.

APPLICATION TO THIN FILM MICROSTRIP LINE

The use of thin-film microstrip (TFMS) line with conven-

tional conductors has been reported e.g in [10]. Apart

from its low chip size requirements it has the advantage

to combine well with active devices because both strip

and ground conductor are accessible from the top side of

the substrate. The drawback of conventional TFMS line is

its high attenuation. With the advent of the new high-T

materials however TFMS may become an interestin~

alternative to coplanar waveguide in MMIC applications

[4]. We have performed full-wave analysis to obtain

propagation constant and attenuation for several TFMS

configurations with Au and YBCO conductors and different

film and substrate materials. The simplified model of
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Flg.2 has the ground conductor replaced by an infinite
perfectly conducting plane. The effect of finite ground
metalization and substrate becomes obvious by comparing
results with that for the more realistic model of Flg.3.

Effective permittivities Seff :=(~/@2 are given in Fig.4
for the case of Si3N4 films (sr’= 7.3) and in Fig.5 for

LaA103 film (sr‘= 24.5). The corresponding transmission
line losses are given in Fig.6 for Au conductors with

u’= 4.3x107 (~m)-l and in Flg.7 for YB~Cu307.X at 77K.

The latter was modeled in accordance with eqn.(2) by

u(f)= (4.106- j #& )(flm)-l for T= 77K (10)

corresponding to A(77K) = 260 nm after measurements repor-

ted in [11]. The different curves labeled 1-13 relate to dif-

ferent combinations of substrate material, conductor material

and strip thtckness f as listed in Table I. GaAs (sr’ = 12.9)

was assumed for the substrate in Flg.3. Dielectric losses

were ignored everywhere but in configurate ion 13.

For all examples a considerable increase of effective

permittivity is observed for Au and YBCO strips against

perfectly conducting strips. The increase can be under-

stood as due to the contributions of internal inductance

L{ (in the case of normal conductors) and kinetic induc-

tance L; (for superconductors) which add to the geotne-

tric inductance L;. If we accept a parallel plate wavegu-

ide with conductor separation d as an approximate model

their contributions can be estimated by

&
eff.normal cond. * 1++ 8sl+—

s d
(11)

eff,perfect cond. g

E ,
eff,superconductor N 1+* asl+—

s d
(12)

eff,perfect cond. g

provided that t is much larger than skin depth 3 and pe-

netration depth 2. While 1 is independent of frequency, 3

behaves like the inverse square root of frequency. Hence

(11) and (12) are in principal agreement with the full-wa-

ve results of Figs.4-7. Better approximations are found

e.g. in [5]. On an expanded scale a small decrease of

effective permittivity over frequency is observed for the

superconducting examples.

FM.2: Simplified model of thin film microstrip line.

CONCLUSION

The space- domain hybrid mode boundary integral equation

method is extended to the analysis of waveguide with ar-

bitrary complex media. The approach has some distinct

advantages with respect to analysis of good conductors

and superconductors. Fields withhr conductors are repre-

sented exclusively by their boundary values. Hence nu-

merical problems due to discretization of eventually very

small interior fields can not arise. Furthermore the pro-

blem of sensitivity to discretization [2] is significantly

reduced. As opposed to [3] the method allows for arbi-

trary conductor shape including curved boundaries. Shiel-

ding is not required.
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TABLE I : TFMS CONFIGURATIONS ANALYZED IN THIS PAPER

Numbers 1-13 correspond to the curves of Figs.4-7.

configuration ~1 82 =3 84 85 =6 =7 I =8 a9 =10 *11 *12 813

geometry Fig.2 F1g.3 Fig.2

strip t/yin 0.5 1.0 1.0

conductor Au IYBCOI perf. \ Au \ YBCOI perf. Au IYBCOI perf. I Au IYBCO I perf. IYBCO

film f r 7.3 24.5

tan$ o ,0-4

ground conductor perfect Au IYBCOI perf. perfect

substrate % 12.9
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Flg.4: Effective Permit.tivity for Si3N4-film
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Fig.5: Effective Permittivity for LaAIO.#ilm
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Fig.7: Attenuation for YBCO-conductors
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